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Abstract 

A model for hysteresis loss of rubber vulcanizates at medium strain (less than 100%) under dynamic condition has been proposed by using 
Boltzmann superposition principle, statistical theory of rubber elasticity and phenomenological theory. The theory incorporates both 
experimental and analytical parameters to quantify hysteresis loss. The model with no adjustable parameter has been successfully tested 
using the experimental results for natural rubber (NR) and styrene-butadiene rubber (SBR) vulcanizates having variations of loading of 
carbon black, silica, clay, resin and curatives, at various strain rates, strain levels and temperatures. The model is virtually indistinguishable 
from other well-known models at low strain. 0 1998 Elsevier Science Ltd. All rights reserved. 
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1. Introduction 

During the past 50 years, mathematical constitutive 
theory for non-linear large elastic deformation of rubber 
have been developed on the basis of the statistical 
mechanics [l-9] and the strain energy density function 
[lo-171. However, quantitative evaluation of hysteresis 
loss is not easy. Early attempts of deriving a mathematical 
expression were not successful due to the complexities of 
the mathematical formulations and the lack of general 
guidelines. Since the hysteresis loss in the rubber compound 
is helpful in understanding the performance of rubber 
vulcanizates, an effort is made here to quantify the amount 
of energy dissipated. Experimental studies regarding hyster- 
esis loss of rubber vulcanizates at low and high strains have 
been reported by various authors: Ferry [ 181, Mullins et al. 
[19,20], Payne et al. [21,22], Medalia [23], Meinecke et al. 
[24] and Roland et al. [25-271. In spite of its obvious impor- 
tance there is surprisingly little published work regarding 
quantitative prediction of hysteresis loss. It has been 
reported that at low strain, hysteresis loss per cycle is pro- 
portional to the loss modulus with a simplifying assumption 
of linear stress-strain relationship [ 181 

(1) 
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where DSA is the double strain amplitude or peak to peak 
displacement in percentage and G”(o) is the loss modulus. 
Yang and Chen [28] calculated energy loss theoretically for 
linear viscoelastic material under periodic triangular strain 
loading by using Boltzmann superposition principle and 
found the results in agreement with Ferry’s conclusions 
[18] that the energy stored during the forward deformation 
half cycle is completely released during the reverse defor- 
mation half cycle. This energy loss in rubber vulcanizates is 
a complicated phenomena. In our earlier communication 
[29], we observed that it is a non-linear function of strain 
amplitudes, strain rates, experimental temperatures and 
compositional variables like filler loading, types of filler, 
resin loading, crosslink density and nature of polymers. 
We have also derived a relationship [30] between heat gen- 
eration of filled rubber vulcanizates and hysteresis loss, 
specific heat, thermal conductivity, modulus, filler loading, 
structure and surface area of the filler, temperature differ- 
ence between application temperature and glass transition 
temperature, frequency, temperature difference between 
wall and environment, stress and stroke amplitude. 

Many fundamental questions appear to be unanswered. Is 
it possible to quantify hysteresis loss at medium strain? 
What is the degree of dependence of hysteresis loss on strain 
level, frequency and temperature? Is the model equation 
different for different elastomers? Does it depend upon 
the physical properties of the rubber compound, for 
example, Young’s modulus, extensibility or resistance to 
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tearing? Does repeated deformation play a direct role in 
causing the failure of rubber to filler network structure? 
The objective of this paper is to answer some of these 
questions and to develop a model equation of hysteresis 
loss with the help of power law derived from Boltzmann 
superposition principle, statistical theory of rubber elasticity 
and phenomenological theory. The theory is compared with 
the experimental results at medium strain uniaxial tension of 
natural rubber and styrene-butadiene rubber vulcanizates, 
having variations of loading of carbon black, silica, clay, 
resin and curatives. 

2. Theoretical background 

Constitutive models of the large strain, non-linear elastic 
behavior of rubbery polymers have been in existence for 
over 50 years; early models included the phenomenological 
invariant-based approaches such as that developed by 
Mooney [l] and the statistical mechanics models by inves- 
tigators such a Flory and Rehner [2], Flory and Erman [3], 
Ullman [4], Erman [4], Stepto [4], and Arruda and Boyce 
[5]. Concurrently, statistical mechanics have been devel- 
oped on the same principle as the rubber elasticity models 
[6-91. The expressions thus derived fail to account for the 
marked dependence of the properties of rubber on strain, 
strain rates, time and temperature. The actual time depen- 
dent response is due to complex chemical and physical 
interactions involving long chain molecules and fillers. 
Obviously, these interactions do not have to follow Hooke’s 
law and Newton’s viscosity law. Models such as that of 
Flory and Rehner [2] or the Kuhn and Grtin model [9], 
later investigated by Treloar [8], previously have been 
shown by Arruda and Boyce [5] not to be predictive of 
the deformation state dependent response of elastomers at 
intermediate and large strains. Similarly, the Flory and 
Erman model [3] requires adjustment of at least one of its 
parameters in order to explain both uniaxial tension and 
uniaxial compression data. 

Considering the Boltzmann superposition principle 
[31-341, the state of stress in a rubber-like-material at any 
given time depends on the deformation history of the 
material prior to that time. If there is a change of strain at 
time t of amount (deldt)dt, the stress at some later time r 
depends on the product of (deldt)dt and a function of elapsed 
time (7 - t). These products are summed from the beginning 
of the deformation history of the material to the time at 
which the stress existing in the material is required. 
The above can be expressed symbolically by the equation 
[31]: 

where +(S,,) is a stress function having the form 4(S0) = St* 
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Fig. I. Effect of extension time and time for stress relaxation on stress at 
different strain rates for natural rubber vulcanizates ( 
60 phr ISAF black at strain rate of 1.9 X 10m4 s-‘; - -, 60 phr ISAF 
black at strain rate of 1.9 X IO -’ s -‘; - -, 40 phr ISAF black at strain rate 
of 1.9 X 10mJ s-‘; - “’ - ,40 phr ISAF black at strain rate of 1.9 X 
10-6 s-1). 

where K* is a constant of the material [31], or, 

where A’ is a material constant. 
Fig. I shows the variation of stress with extension time 

and time for stress relaxation. As usual, the stress increases 
with the increase in extension time at constant strain rate 
and the stress decays with time at constant strain. It may be 
inferred in line with earlier authors [31] thatf(r - t) may be 
represented with sufficient accuracy by the simple function 
(7 - t)-” in the case of stress relaxation and (7 - t)+m in the 
case of extension time. Although the value of the index m is 
found to depend on the value of (7 - t) and level of strain, it 
may be considered constant over a wide range of values of 
(7 - t). Fig. 2 illustrates that stress is a non-linear function 

E ,.,L-._--_ 
0 1.0 2.0 I 

STRAIN RATE ~10’~ (set-‘) - 

Fig. 2. Effect of strain rates on stress at 100% elongation at different 
temperatures for 60 phr ISAF filled natural rubber vulcanizate (- 0 -, 
25°C; A -, 50°C; - 0 -, 75°C; - A -, 100°C; and 0 -, 125°C). 
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of strain rates over a temperature range from 25 to 125°C. 
The non-linearity of stress with strain rate, stress relaxation 
and extension time have been demonstrated before 
[31,33,34]. We have extended the superposition principle 
by using non-linear functions [35]. Therefore, Eq. (3) now 
becomes 

685 

By substituting Eq. (11) into Eq. (8), we obtain the stress 
response function as follows: 

(12) 
,(~o)=Arii(i-l)‘m(~)n dt 

0 

(4) 

The classical theories of a purely entropic elasticity, repre- 
sented by Eq. (5) lead to the brilliant conclusion that the 
stress should be directly proportional to the absolute tem- 
perature (0,) at constant extension ratio (X). The elastic free 
energy (IV*) in terms of the conformational entropy along 
[S] is given by 

w* = 1/2Y,k*8& +x; +x; - 3) (5) 

where vi is the number of network chains per unit volume 
(the crosslink density), k * Boltzmann’s constant and h,, hZ, 
h3 the extension ratios in three directions. Hence, 

w* m 00 (6) 

As the stress depends on the temperature, it should be 
proportional to the temperature rise during deformation of 
rubber vulcanizates. The above can be expressed as 

+(So) 0~ do (7) 

From joint variance, a comparison of Eq. (4), Eq. (7) reveals 
that 

where -A” is a material constant. 
From thermodynamics and the calorimetric principles, 

under quasi-adiabatic condition the temperature rise (d(3) 
in an extension from the unstrained length (la) to the final 
strain (ei), is given by 

* 
PO 

wcl ds’ 
de=-- - 

m”CL K > o dl oo,p’ 
de (9) 

where CL is the specific heat, m” is mass of the vulcanizate 
and (d.~‘/dl)B,VpS is the change of entropy on extension dl at 
constant temperature B0 and pressure p’. 

According to the principle of thermodynamics [8], we can 
write 

(10) 

where (ds/dO),,,, is the change of stress with the change of 
temperature (de) at constant length 1 and pressure p’. 

Now combining Eq. (10) into Eq. (9) the temperature rise 
may be expressed as 

(11) 

In order to derive the dependence of stress on temperature 
(0,) under any specified condition (i.e. constant volume or 
constant pressure), Eq. (13), given below, derived by 
Treloar [8] may be introduced into Eq. (12) 

(13) 

In this expression, S;*, is a function of strain and time, and 7; 
is a function of temperature, but is independent of the 
volume of the specimen. On the other hand, $ is a function 
of the volume of the specimen. /3 is the volume expansion 
coefficient. 

The mean square chain length, Y-f, in the unstrained state 
is the same as the mean square vector length, F& of a corre- 
sponding set of free chains. From statistical theory of rubber 
elasticity [8], Yi may also be represented as 

I r*co(r) dr 

<T_,>* Z-O 
cc (14) 

I 
O(Y) dr 

0 

The radial distribution function o(r) in the non-Gaussian 
region was first derived by Kuhn and Grtin [8] and given by 

Ii 
(15) 

where C* is a normalization constant, L-’ is the inverse 
Langevin function and n’ is the number of monomer units 
in a polymer chain, each of which has a length 1’. 

From Eqs (14) and (15), we obtain 

(To)* =f(n’l’) (16) 

Taking logarithms and differentiation of Eq. (16) with 
respect to temperature with a simplifying assumption that 
1’ is independent of temperature (0,) due to the very low 
thermal expansion coefficient of the molecules in the cross- 
linked state, we have 

d ln(rO) 
-= 

d0 

d lnf(n’l’) = o 

dt9 

Comparison of Eq. (13) with Eq. (17) reveals that 

(17) 

(18) 
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Now introducing Eq. (18) into Eq. (12), we therefore write where X is the uniaxial stretch 

(19) 

If the strain is a simple harmonic function of time such that 

e;(t) = ei sin wt (20) 

then stress becomes 

S:(t) = Sr sin(wt + S) (21) 

where w is the frequency and 6 is the phase angle. In this 
case, we assume that phase angle is independent on strain 
amplitude (at intermediate strain, phase angle varies slightly 
with strain amplitude). 

Analysis of the dynamic response by using sine functions 
is not a problem, but the use of complex functions gives 
easier mathematical formulation and better understanding 
of the process of deformation. On the basis of complex 
variables, the input and the output function can be repre- 
sented as 

ei( t) = eT, expiWt 

1 S;(t) = Sr exp’(wt + ‘) 
(22) 

Now performing the differentiation of Eq. (22) with respect 
to time (t), then substituting into Eq. (19) and rearranging, 
we can write 

I 

ec1 

+(s ) = _ A”lo{e~(w)J”(i)“(w)n 
0 m"CL I se* expi(wt +s) 

0 
0 

.[I - &]dei(i-t)‘” explriWtdt (23) 

where Sg” is a function of strain. To find out the stress at any 
point, we have to replace Sr in terms of strain. For this 
purpose we apply continuum theory of finite deformation. 

Now applying the continuum theory of finite deforma- 
tion, the stress-strain equation of homogeneous isotropic 
and elastic materials such as vulcanized rubber can be 
derived from the strain energy density function, W,, which 
is the elastic energy stored in a deformed body. 

According to Ogden [S], the strain energy for incompres- 
sible material can be written as 

W* = W(Zr) + W(Z2) = i 9 (Cjlbj) (A:!_ 1 - 1) (24) 
i’=l j=l 

where Cj and bj are material coefficients; X1, h2 and X3 are 
the principal extension ratios; and m’ is a material constant. 

In the case of homogeneous uniaxial deformation, the 
stress Sr can be derived from W, 

=1+dl 
10 

(26) 

=l+e 

A comparison of Eq. (23) with Eqs. (25) and (26) reveals 
that 

* 
% 

m’ 

VW’,) =AW” Lx [ Cj (1 +e)‘i-’ - (1 +e)-(‘+“‘5 “/‘I 
“0 j=l 

.expi’Ufi”‘[l - &]dei(‘4f.’ expniWt dt 

(27) 

where 

A = _ A’%]e&)l” 
mnCL 

Now, we assume that stress (So) is a non-linear function of 
$(So). The above Eq. (27) can be represented as 

I 

S;” =A@)" Cj[(l+e)b'-l -(l +e)-(1+o’5 “I)] 

7 

-exp”““@[l - ;“rl]de{(r-t)‘m expniWt dt (28) 

We design the experiment in the following manner. We 
elongate the test piece at a certain strain rate up to ek+l. 
Then, the test piece is retracted at the same train rate. The 
stress-strain curve obtained is represented in Fig. 3. 

The complete cycle consists of two segments: a deforma- 
tion segment from time (V - 1)~’ + tk-l to (V - 1)~’ + tk and 
a recovery segment from (V - 1)~’ + tk,,-l to (u - 1)~’ + tpf. 

(25) 
j=l 

Fig. 3. Schematic representation of typical stress-strain hysteresis loop 
curve for an arbitrary rubber vulcanizate. 
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v represents the number of cycles which varies from 1 to 
N’ + 1 and k is a number that varies from I to k’ and k” from 
k’ + 1 to k’ + k2. 

It is observed that the magnitude of m varies with time in 
the following manner. Between (v - 1)~’ + tk-] to (v - 1)~’ 
+ tk, let m have the value rn[ and between (V - 1)~’ + tk”-l 
to (v - 1)~’ + tv have the values w$. In this time interval 
the strain value varies in the following manner: ei to e; + , in 
the time interval (v - 1)~’ + tk_, to (v - 1)~’ + tk and I$ to 
e;,,+ 1 in the time interval (v - 1)~’ + tv_l to (v - 1)~’ + ty. 

Considering Eq. (28) the stress at any cycle and at any 
point may be represented as 

Y 

k' N'+ I Qfl m ’ 

~6 = kzl uvula &XV iv jzl C, [(’ + e)b’ - ’ 
k 

_~l+e~-(l+O.“b,)]~e,P~(~~+~) 1 _ pe, 

[ 1 e3 - 1 

(u-l)T’+fk 

X de 
s 

(t - tk _ I)mi expnlW’ dt 
(v- l)r’+rk_, 

_(l +e)~(1+0.sb,)].exp’(W’+6) 1 

[ 1 
@o de 

e3 - 1 

(u ~ 117’ + g,, 

I 

Y 
(t - tp _ , ) - Q’ expniWt dt (29) 

(v- 1)7’+f&, 

The first term on the right hand side of Eq. (29) portrays the 
stress during the deformation part of the cycle and the 
second term represents the recovery part of the cycle. 

3. Hysteresis loss or energy dissipation 

Since the energy loss per unit time t per unit volume of a 
material is the product of the instantaneous stress and the 
rate of strain i.e. 

Ei, = S,(t)k(t) (30) 

the total hysteresis loss per unit volume in a deformation 
cycle is represented by 

NY = $ So(t)t(t) dt (31) 

For the first cycle with time from zero up to 2t,, the total 
hysteresis loss per unit volume is given by 

& 2t!i 

Hy = 
I 

So( dt + 
s 

S,(t)&(t) dt (32) 
0 tk 

The equations for the hysteresis loop after the first cycle can 
be readily derived by further application of superposition 
principle. 

The hysteresis loss per unit volume in the steady state i.e. 
in the Nth cycle is given by 

NT’ + fk NT’ + ti/ 

Hy = 
I 

So(t)P(t) dt + 
I 

S,(t)k(t) dt (33) 
Nr’+tk-, NT’ + tk,, , 

For complex mathematical formulation, it is very difficult to 
find out H, from Eq. (32). As an approximation, we there- 
fore consider the integral above (Eq. (31)) to be written as 
follows 

E Hy k” 1 =f Sf’ (t) de (34) 

Substituting Eq. (29) into Eq. (34) with a simplifying 
assumption (m = 1, j = 1, n = 1) of non-linear function 
of stress-strain rate and extension or retraction time, we find 
that the hysteresis loss per unit volume for complete cycle is 

[Hy] K* = 

n” + I 
el 

n”f 1 
e1 

n”@” + 1)2 - n”(?z” + 1) 1 (35) 

where M” = 0.013.4”W, = Constant 
3c, 

The constant M* depends on Ci, the material coefficients. 
As C1 is constant for a given vulcanizate, so M* is also 
constant (but not a universal constant). 

The energy stored per unit volume in a quarter cycle is 

@Energy StoredlK* = qg @o 

x 4;;eo I $I g- ,f,+’ 
[ 

,:‘+’ ] 
n”(n” + 1)2 - n”@” + 1) 

(36) 

The ratio of dissipated to stored energy per cycle is 

[ 

E K” 
Energy dissipated 

E 1 =27rtan6 (37) 
Energy stored 

At very low strain (where K* = l), Eq. (34) reduces to 

where 

G”(w) = M+ PO 
Similarly, Eq. (36) gives 

E 
G’(w)e: 

Energy stored = 8 

where 

G’(w) = !!cg pe, 

(38) 

(39) 
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Table I 
Formulation of mixes 

Mix 
number 

A, B, C, D, E, F, G, H, 1, J, K, L 

NR 100 0 100 0 100 0 100 0 LOO 0 100 0 
SBR 0 100 0 100 0 100 0 100 0 100 0 100 
zno 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 
Steric 
acid 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 
TMQ 1.5 1.5 I .5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 
6PPD 1.5 1.5 1.5 1.5 1.5 1.5 I .5 1.5 1.5 1.5 I .5 1.5 
ISAF 
black A ,=o~K B ,=OLK 40 40 40 40 40 0 0 0 0 0 
Silica 0 0 0 0 0 0 0 0 20 20 0 0 
Clay 0 0 0 0 0 0 0 0 0 0 20 20 
Aromatic 
oil 5.0 5.0 5.0 5.0 5.0 5.0 0 0 0 0 0 0 
Si-69 0 0 
Resin 0 0 

C;&; L&i 0 0 0 0 2.0 2.0 0 0 
0 0 10 10 0 0 0 0 

BSM 0.8 0.8 0.8 0.8 EL&d FI&3 0.8 0.8 0.8 0.8 0.8 0.8 
Sulfur 2.5 2.5 2.5 2.5 E&4 F,&? 2.5 2.5 2.5 2.5 2.5 2.5 
PVI 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

A r+h,,: A,,, A 20, A40, ACO, suffix indicates loading of filler 
BIEom6,,: A”, A*,,, A.,“, AGo, suffix indicates loading of filler 
C’=&“. 6’ C”’ 6’ 1=&w Or (1, 409 Cji, i indicates loading of filler andj indicates loading of resin- 

q:z;: D;;, D:;‘, D&, D2’ ” 4o, 1 Indicates loading of filler and j indicates loading of resin 
E,=,_z,: E, (BSM/S = 0.8/2.5), Ez (BSIWS = 1.5/1.5), E?(BSMIS = l.O/l.O), E,(BSM/S = 3.Oi3.0) 
F,=,_‘,: F, (BSM/S = 0.8/2.5), F2 (BSM/S = 1.5/1.5), F,(BSMIS = l.O/l.O), F,(BSM/S = 3.0/3.0) 

The ratio of dissipated to stored energy is 

[ 

E Energy dissipated 

E 
= [2a tan 61 

Energy stored 1 
where 

(40) 

tan 6= s 
w 

Eqs. (38)-(40) agree with Eqs. (24)-(26) in chapter 5 of 
reference [36]. 

4. Experimental 

The formulations of the various mixes are given in 
Table 1. The nature of polymers (mixes A ; to LJ, the loading 
of filler (mixes (A, and BJ, the nature of filler (mixes Ii, Ji, 
Ki and LJ, the loading of resin (mixes Ci and Oi) and the 
crosslink density (mixes Ei, Fi, Gi and Hi) were varied. 
Natural rubber (RMA-4), SBR-1502, stearic acid, Si-69 
(Degussa, AG), silica and aromatic oil were supplied by 
Birla Tyres Ltd., Balasore. ISAF (N220) was supplied by 
Phillips Carbon Black Ltd., Durgapur. Zinc oxide and clay 
were obtained from the local market. High styrene resin and 
sulfur were supplied by Bengal Waterproof Ltd., Panihati. 
Polymerised 1,2-dihydro 2,2,4-trimethyl quinoline (TMQ), 
N-(1,3-dimethylbutyl)-N’-Phenyl-p-phenylene-diamine (6- 
PDD), N-cyclohexylthiophthalimide (PVI) and 2-(4- 
morpholinyl mercapto)-benzthiazole sulphenamide (BSM) 
were supplied by ICI Ltd., Rishra. 

5. Mixing 

The ingredients were mixed with rubber on a two-roll 
mill (0.15 X 0.33 m, Schwabenthan, Germany) at a tem- 
perature of 50°C and a friction ratio 1: 1.1. 

6. Curing 

The curing characteristics of the mixes were evaluated 
from a Rheometer R-100 according to ASTM D- 1084-8 1. 
The moulding of the tensile sheets was carried out at a 
temperature of 150°C 4 MPa pressure and optimum cure 
time (tgO in minute) using David Bridge Press, Castleton, 
Rochdale, England. 

7. Measurements 

7.1. Hysteresis 

Medium strain hysteresis loss is defined as the energy 
dissipated in stretching, when the specimens were deformed 
to strain level less than 100%. Hysteresis loss was deter- 
mined on the tensile dumbbells (ASTM D-412-80, type 2 
die) over a range of temperatures (25 to 100°C) and strain 
rates (1.9 X 10m3 s-’ to 9.5 X lop2 s-‘) and extensions 1 to 
100% using Zwick Universal Testing machine 1445 
equipped with an environmental chamber. The samples 
were mounted in mechanical clamps 44 mm apart and the 
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cross-head was adjusted to give zero tension. The tempera- 
ture was controlled to +0.5”C. The samples were precondi- 
tioned in the Zwick heating chamber for 10 min before 
testing. For the purpose of obtaining hysteresis energy 
loss continuously, the stress-strain curves were recorded 
on tape and fed into the attached computer. The measure- 
ments were continued up to eight cycles. Experimental 
results were reproducible within t 1%. 

7.2. Dynamic mechanical properties 

The elastic modulus (E’), loss modulus (E’) and loss tan- 
gent (tan 6) were calculated from hysteresis loop by meth- 
ods described elsewhere [37]. The loops were obtained from 
the stress-strain measurements (forward and retraction 
curves). At high deformation, the hysteresis loops were 
not ellipsoidal, instead appeared as banana-shaped loops. 
The skewed loop was transformed into a nearly elliptical 
loop by plotting true stress [(F’/Aa)(l+e)] in place of engi- 
neering stress [(F’/Ao)] as a function of strain, where F’ is 
the force, A0 is the original cross-sectional area and e is the 
strain. It is estimated that the maximum errors in the 
dynamic mechanical properties were about + 2% 

7.3. Young’s modulus 

Young’s modulus was measured from the initial slope 
(below 50% elongation) of the stress-strain curves in a 

Table 2 
Material constants K* and IV**’ of NR and SBR vulcanizates at 25°C 

Zwick UTM model 1445 according to ASTM D 412-80 
over a range of temperatures from 25 to 100°C and strain 
rates 1.9 X lo-” SK’ to 9.5 X lo-* s-‘. Experimental results 
were reproducible within +- 1%. 

7.4. Volume expansion coeficient 

The values of volume expansion coefficient of rubber 
were taken from the literature [38]. 

8. Results and discussion 

The result is a fully three-dimensional variable based 
constitutive model of rubber elasticity in which the rubber 
modulus and limiting network extensibility properties are 
needed to be completely characterized for the hysteresis loss 
of rubber vulcanizates. The quantitative prediction of hys- 
teresis loss using Eq. (35) would involve the measurement 
of K*, M*, volume expansion coefficient (p), and phase 
angle (6) at a frequency (w) and operating temperature 
(0,). For the sake of convenience, we define another para- 
meter M**, as follows: 

M** = [M*] l/K” (41) 

Hysteresis loss was performed at different strain levels, in 
order to obtain the material constants K* and M**. The 
constants were evaluated by curve fitting using known 

First cycle Fourth cycle First cycle Fourth cycle 

Strain rate (s-‘) X IO+* 1.9 9.5 1.9 9.5 1.9 9.5 1.9 9.5 

K* 1.75 1.75 1.75 1.75 B0 
IV** 0.06 0.10 0.04 0.06 

K* 1.75 1.75 1.75 1.75 Bzo 
IV** 0.16 0.36 0.10 0.22 

K* 1.75 1.75 1.75 1.75 B‘UJ 
IV** 0.28 0.63 0.18 0.40 

K* 1.75 1.75 1.75 1.75 AhO 
A4** 0.55 1.26 0.45 1 .o 
K* 1.75 1.75 1.75 1.75 DA" 
Iv** 0.06 0.07 0.04 0.05 

K* 1.75 1.75 1.75 1.75 0:: 
IV** 0.32 0.80 0.20 0.40 

K* 1.75 1.75 1.75 1.75 0:: 
IV** 0.33 0.79 0.22 0.56 

K* 1.75 1.75 1.75 1.75 FI 
IV** 0.32 0.63 0.22 0.45 

K* 1.75 1.75 1.75 1.75 F? 
‘w** 0.28 0.71 0.18 0.50 

K* 1.75 1.75 1.75 1.75 F? 
IV** 0.50 1.26 0.30 0.89 

K* 1.75 1.75 1.75 1.75 JI 
IV** 0.10 0.22 0.07 0.16 

K* 1.70 1.75 1.70 1.70 Ll 
M** 0.13 0.32 0.07 0.16 

K* 1.75 1.75 1.75 1.75 
M** 0.09 0.20 0.06 0.13 
K* 1.75 1.75 1.75 1.75 
M** 0.16 0.45 0.10 0.32 
K* 1.75 1.75 1.75 1.75 
M** 0.32 0.63 0.22 0.56 
K* 1.75 1.75 1.75 1.75 
M** 0.56 1.26 0.25 0.80 
K* 1.75 1.75 1.75 1.75 
M** 0.10 0.32 0.06 0.16 
K* 1.75 1.75 1.75 1.75 
M** 0.32 1.00 0.24 0.56 
K* 1.75 1.75 1.75 1.75 
M** 0.32 0.89 0.18 0.63 
K* 1.75 1.75 1.75 1.75 
M** 0.22 0.46 0.18 0.36 
K* 1.75 1.75 1.75 1.75 
M** 0.25 0.80 0.18 0.56 
K* 1.75 1.75 I .75 1.75 
M** 0.25 0.80 0.18 0.56 
K* 1.75 1.75 1.75 1.75 
M** 0.18 0.56 0.14 0.36 
K* 1.75 1.75 1.75 1.75 
M** 0.20 0.60 0.18 0.41 

“The unit of material constant M** is MPa s-“’ 
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Table 3 
Material constants K* and IV**” of SBR vulcanizatea at 100°C 

First cycle 

Strain rate 
(s-1) x lo+* 0.19 

(Bzo) K* 1.75 
lw** 0.05 

(FI) K* 1.75 
M** 0.06 

(Fz) K* 1.75 
M** 0.03 

(JI) K* 1.75 
M** 0.07 

(L,) K* 1.75 
&I** 0.05 

“The unit of material constant M** is MPa s-“~ 

1.9 

1.75 
0.18 
1.75 
0.11 
1.75 
0.07 
I .75 
0.28 
1.75 
0.18 

9.5 

1.75 
0.32 
1.75 
0.22 
1.75 
0.11 
1.75 
0.63 
1.75 
0.32 

Fourth cycle 

0.19 

I .75 
0.02 
1.75 
0.03 
1.75 
0.01 
1.75 
0.04 
1.75 
0.02 

1.9 9.5 

1.75 1.75 
0.08 0.20 
1.75 1.75 
0.10 0.12 
1.75 1.75 
0.04 0.10 
1.75 1.75 
0.18 0.40 
1.75 1.75 
0.08 0.20 

values of hysteresis loss, frequency, phase angle, volume 
expansion coefficient and temperature. Once characterized 
using the single medium deformation experiment, the 
hysteresis loss in other deformation state may then be pre- 
dicted without adjusting any model parameter. Tables 2 and 
3 describe the values of K* and M** for the vulcanizates A, 
and L,. 

It is apparent from Tables 2 and 3 that the material con- 
stant M** is a function of strain rates, number of cycles, 
temperatures and material compositions. The material con- 
stant (M**) increases with increase of strain rate but 
decreases with increase of temperature and number of 
cycles. At multiple cycles, the material constant of the 
rubber decreases and becomes almost constant from the 
fourth cycle onward. This is ascribed to the disentanglement 
and reorientation of long chain rubber molecules during 
stretching along the direction of major axis. The material 
constant is in general higher for SBR vulcanizates (except 
F,) due to the reasons described later. It is important, there- 
fore, that increment or decrement with reference to material 
constant, M**, due to the varying compositions of rubber 
vulcanizates and operating variables should be correlated 
with the basic properties of the rubber vulcanizates. 

M;‘(MF’asec-h) - 

Fig. 4. Material constant IV**, versus another material constant My’. 

Hence, another material constant MT*, may be defined as 
the product of Young’s modulus and square root of the 
strain rate. Fig. 4 plots the values of material constant 
M** against the material constant MT* for both NR and 
SBR vulcanizates over a range of strain rates, number of 
cycles, temperatures and material compositions. The varia- 
tion in compositions includes nature and level of filter, resin 
and vulcanization system. From Fig. 4 the following 
equation is derived 

M”* =A”M;* (42) 

The value of A* has been found to be 0.5. An excellent 
correlation is observed between the material constant M** 
and MT*. A plot of the material constant in Fig. 4 shows that 
model equation of hysteresis loss is a non-linear function of 
material properties i.e. Young’s modulus. 

On the other hand, the other material constant, K*, is 
independent of number of cycles, material compositions, 
temperatures and strain rates. 

The variations of loss tangent (tan S) with DSA at differ- 
ent strain rates are shown in Fig. 5. At small strain, tan 6 is 
small. As the strain amplitude is increased, tan 6 passes 
through a maximum value. The loss tangent increases 

0.30 - 

t 
; 0.20 - 

,4 

0.10 - 

Fig. 5. Effect of double strain amplitude on loss tangent on a semilog plot: 
fourth cycle in different strain rates for 40 phr ISAF filled NR vulcanizates 
(-0.. 1.9X IO-’ SK’; - A -, 1.9x10-* SK’; and - 0 -, 9.5~10~~ s-l). 
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DSA - 

Fig. 6. Effect of DSA on loss tangent for 40 phr ISAF filled NR vulcanizates 
at 9.5 X lo-* SC’ strain rate (- 0 -, first cycle; and - 0 -, fourth cycle). 

with the strain rates at any double strain amplitude. At low 
DSA, the agglomerate structure of the carbon black does not 
break down. The high energy dissipation in the region of the 
maxima is the result of frictional force due to agglomeration 
and deagglomeration of the filler. This mechanism 
decreases at high strain amplitudes where the agglomerated 
structures break down. Fig. 6 illustrates the plot of the loss 
tangent versus DSA at first cycle and fourth cycle on a 
semilogarithmic plot. The nature of this curve is almost 
similar to that shown in Fig. 5. It may be noted that 
tan a,, value appears at 0.2 DSA. These results are in 
agreement with the literature values [36]. Thus, we can 
infer that a standard analysis [37] of the distorted hysteresis 
loops obtained at large DSA is sufficiently accurate for our 
analysis. 

The hysteresis loss at different temperatures, frequencies 
and strain levels have been computed at the desired cycle. 
The results regarding hysteresis loss of first cycle are plotted 
against DSA for both NR and SBR vulcanizates shown in 
Figs. 7 and 8. The experimental values are also shown in the 
same curve. The hysteresis loss increases with an increase in 
strain level due to more breakdown of rubber-filler agglom- 
erate structures and higher coefficient of friction between 
molecules. At 0.6 DSA, there is a sharp increase of hyster- 
esis loss due to the breakdown of rubber-filler agglomerate 
structures. The theoretical values calculated by Eq. (35), are 
in good accord with the experimental values (within + 1%). 
The model equation also reveals that the degree of depen- 
dence of strain level on hysteresis loss is a highly non-linear 
function. 

The decrease of hysteresis loss with an increase in Jem- 
perature due to the decrease in M**(M** = [M*lnK ) is 
reflected in our model Eq. (35). This is attributed to the 
decrease of coefficient of friction between the molecules, 
melting of immobilized rubber shell around the filler surface 
and decrease of rubber-filler interaction. 

691 

0 
DSA - 

Fig. 7. (a) Effect of double strain amplitude and hysteresis loss for 40 phr 
ISAF tilled NR vulcanizates. Theoretical prediction: J. D. Ferry (- 0 -, at 
strain rate 9.5X 10m2 s-‘) and our model Eq. (35) at different strain rates: 
_ _ ) 1.9xlo~ss~‘; -’ ‘-, 1.9xlo~*s&; -, 9.5~10~’ SC’. (b) 
Experimental results at different strain rates (0, 1.9 X 10m3 SC’; a, 1.9 X 
10~2sC1; and 0, 9.5 X 10e2 SC’) 

I L I 
1.6 1.8 : 0 

DSA - 

Fig. 8. Effect of double strain amplitude on hysteresis loss at strain rate 
1.9 X lo-* SC’ for SBR vulcanizates having variation of loading of carbon 
black. 

The model equation shows that hysteresis loss per unit 
volume and per cycle is inversely non-linear function of 
frequency. But hyteresis loss per unit volume and per 
second (ci,) when the frequency is 
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1. Hysteresis loss per unit volume and per cycle in a rubber 
vulcanizate is a highly non-linear function of strain level 
as follows: 

n” + I l/K* 

el W 
- 

n”(n” + 1) 
11 

L-1 2n 
(43) 

Rearranging Eq. (43), we obtain 

n”+ 1 l/K* 
el 

n”(n”+ 1) 
11 

w l&I/K’ 
- 

[ 1 ?r 
(44) 

Substituting the value of K* from Tables 2 and 3 into Eq. 
(44) we obtain 

n” + I 0.57 
e1 

W 0.43 
- 

n”(d + 1) 
11 

L-1 7r 
(45) 

Model Eq. (45) reveals that hysteresis loss per second 
increases in proportion with frequency of deformation. It 
was also reported in earlier papers [29,31]. 

The hysteresis loss has also been calculated using Ferry’s 
equation [iSI (Eq. (l)), shown in the same Fig. 7. At low 
DSA, there is some agreement, but divergence is observed 
at medium DSAs. Our calculation shows better correspon- 
dence at low and medium DSAs. 

It is understood from Tables 2 and 3 and Fig. 4 that model 
equation regarding quantitative evaluation of hysteresis loss 
in any deformation state without adjusting any model para- 
meter, is independent of the nature of elastomer and vulca- 
nizates having variation of compositions. 

9. Conclusions 

In this paper we have developed a constitutive model for 
quantitative prediction of hysteresis loss of rubber vulcani- 
zates at medium strains (1- 100%). The relationship relating 
hysteresis loss with the material properties and the operating 
parameters i.e. material constants, strain levels and tempera- 
tures, has been developed by using power law derived from 
Boltzmann superposition principle, statistical theory of 
rubber elasticity and phenomenological theory. The model 
uses the experimentally measured material constant of a 
deforming elastomer as a state dependent variable and the 
rubbery modulus of the elastomer to simulate the nominal 
stress response associated with the imposed deformation 
state. The following conclusions are made. 

s”*wsin 6 peo i 
I, 

[i&l K’ = &+,i,$ 
nn+ 1 

el 
?I”+ I 

el 
n”(n”+ 1)2 - ?z”(n”+ 1) I 

The model equation is shown to be successful in describ- 
ing the increase of hysteresis loss with increase of strain 
levels (l-100%) and decrease of hysteresis loss with 
increase of temperatures for both natural rubber and 
styrene-butadiene rubber networks. 
Hysteresis loss can be calculated at any strain levels 
(1- lOO%), frequencies and temperatures for natural 
rubber and styrene-butadiene rubber vulcanizates, 
having variations of loading of carbon black, silica, 
clay, resin and curatives. 
The material constant, M**, is a function of strain rates, 
temperatures, number of cycles and material composi- 
tions. 
The other material constant, K*, is independent of tem- 
peratures strain rates, strain levels, number of cycles and 
material compositions. 
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Appendix A 

Eq. (29) given in the text can be solved as follows. 
Performing the integration with respect to the corre- 

sponding variables, then summing a geometric series and 
rearranging Eq. (29) we obtain the stress at any point in the 
first cycle 

+fk” + hk” 
1 

[(Bk” - Ek”) - (Dk” - &‘)@O] 641) 
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where 

A = _ A%{&w)}” 

CL 

w = 2~7 (,f’ is the number of cycles per unit of time) 

F=nw 

(I), = H sin(Ft,) + I sin(Ft,) + K cos(Ft,) - L cos(Ft,) 

(d), = L sin(Ft,) + H cos(Ft,) + I cos(Ft,) - K sin(Ft,) 

b~=bj- 1, b~=(l +0.5bj) 

+(forb;=l) 

f$ i 
2 4 1 2 

or 4+~+~-!$‘_~_;(forb;=2) 

or 1(en+,+l)bi+2-& 
b; +2 

(Q+, + qb’+l 
.I 

- &(ek+l)bi+2+ & (ek + l)b; + ’ ’ (for bj > 2) 
J J 

&=%+I -ln(ek+l+l)-ek+ln(ek+l) (forbj=l) 

1 
or -+ln(ek+l + l)- 

1 

ek+l+l 
~ - ln(ek + 1) (for bj = 2) 
ek+l 

1 1 

Or (b;-l)(e,+,+l)b;-‘-(b;-2)(ek+,+l)b:-2 

1 1 - ,c 
(bj - l)(ek+ l)b;-’ 

+ n b,, 
(bj-2)(ek+l)J- 

2 (for b; > 2) 

Dk = Pk ln(ek + I 
Qk 

-I)+ yh(et+l +ek+l + 1) 

- pk 

Gk = Tk ln(ek + I -Il)+:h(e:+,+ek+,+l) 

2ek+l + 1 
- Tk h(ek - 1) 

x, = mk(mk - l)(mk - 2, tk 3 

3! 0 t + ...co 

wk = Imaginary part of Ak(i)“(exp)‘” 
I 

tm”& expniW’dt 

L I 

Yk = Imaginary part of &(i)‘(exp)‘“( - mktk_ , - 2) 

X s expn’Wt dt 

tk- I 

uk” exp” 
fY = Imaginary part of ~ 

ek’ 

bk” exp’” 
hk” = Imaginary part of ~ 

ek’ 

Pk, Qk, vk, Rk, Tk and Uk are COllStalltS. 
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